108 research outputs found

    Bifurcation Phenomena. A Short Introductory Tutorial with Examples

    Get PDF

    Network Cosmology

    Full text link
    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology

    Empirical Foundation of Space and Time

    Get PDF
    I will sketch a possible way of empirical/operational definition of space and time tags of physical events, without logical or operational circularities and with a minimal number of conventional elements. As it turns out, the task is not trivial; and the analysis of the problem leads to a few surprising conclusions

    Revisiting special relativity: A natural algebraic alternative to Minkowski spacetime

    Get PDF
    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension ict i c t , with the unit imaginary producing the correct spacetime distance x2c2t2 x^2 - c^2 t^2 , and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary i=1 i = \sqrt{-1} , with the Clifford bivector ι=e1e2 \iota = e_1 e_2 for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis e1 e_1 and e2 e_2 . We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.Comment: 29 pages, 2 figure

    The emergence of reciprocally beneficial cooperation

    Get PDF
    We offer a new and robust model of the emergence and persistence of cooperation when interactions are anonymous, the population is well-mixed, and evolution selects strategies according to material payoffs. The model has a Prisoner’s Dilemma structure, but with an outside option of non-participation. The payoff to mutual cooperation is stochastic; with positive probability, it exceeds that from cheating against a cooperator. Under mild conditions, mutually beneficial cooperation occurs in equilibrium. This is possible because the non-participation option holds down the equilibrium frequency of cheating. Dynamic properties of the model are investigated theoretically and through simulations based on replicator dynamics

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    On the expected number of internal equilibria in random evolutionary games with correlated payoff matrix

    Get PDF
    The analysis of equilibrium points in random games has been of great interest in evolutionary game theory, with important implications for understanding of complexity in a dynamical system, such as its behavioural, cultural or biological diversity. The analysis so far has focused on random games of independent payoff entries. In this paper, we overcome this restrictive assumption by considering multi-player two-strategy evolutionary games where the payoff matrix entries are correlated random variables. Using techniques from the random polynomial theory we establish a closed formula for the mean numbers of internal (stable) equilibria. We then characterise the asymptotic behaviour of this important quantity for large group sizes and study the effect of the correlation. Our results show that decreasing the correlation among payoffs (namely, of a strategist for different group compositions) leads to larger mean numbers of (stable) equilibrium points, suggesting that the system or population behavioural diversity can be promoted by increasing independence of the payoff entries. Numerical results are provided to support the obtained analytical results.Comment: Revision from the previous version; 27 page

    Evolutionary Substitution and Replacement in N-Species Lotka-Volterra Systems

    Get PDF
    The successful invasion of a multi-species resident system by mutants has received a great deal of attention in theoretical ecology but less is known about what happens after the successful invasion. Here, in the framework of Lotka-Volterra (LV) systems, we consider the general question where there is one resident phenotype in each species and the evolutionary outcome after invasion remains one phenotype in each species but these include all the mutant phenotypes. In the first case, called evolutionary substitution, a mutant appears in only one species, the resident phenotype in this species dies out and the mutant coexists with the original phenotypes of the other species. In the second case, called evolutionary replacement, a mutant appears in each species, all resident phenotypes die out and the evolutionary outcome is coexistence among all the mutant phenotypes. For general LV systems, we show that dominance of the resident phenotype by the mutant (i.e. the mutant is always more fit) in each species where the mutant appears leads to evolutionary substitution/replacement. However, it is shown by example that, when dominance is weakened to only assuming the average fitness of the mutants is greater than the average for the resident phenotype, the residents may not die out. We also show evolutionary substitution occurs in two-species competitive LV systems when the initial invasion of the resident system (respectively, of the new coexistence system) is successful (respectively, unsuccessful). Moreover, if sequential evolutionary substitution occurs for either order that the two mutant phenotypes appear (called historically independent replacement), then it is shown evolutionar

    Descriptive Topological Spaces for Performing Visual Search

    Get PDF
    Accepted versionThis article presents an approach to performing the task of visual search in the context of descriptive topological spaces. The presented algorithm forms the basis of a descriptive visual search system (DVSS) that is based on the guided search model (GSM) that is motivated by human visual search. This model, in turn, consists of the bottom-up and top-down attention models and is implemented within the DVSS in three distinct stages. First, the bottom-up activation process is used to generate saliency maps and to identify salient objects. Second, perceptual objects, defined in the context of descriptive topological spaces, are identified and associated with feature vectors obtained from a VGG deep learning convolutional neural network. Lastly, the top-down activation process makes decisions on whether the object of interest is present in a given image through the use of descriptive patterns within the context of a descriptive topological space. The presented approach is tested with images from the ImageNet ILSVRC2012 and SIMPLIcity datasets. The contribution of this article is a descriptive pattern-based visual search algorithm."This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant 418413, and the Faculty of Graduate Studies at the University of Winnipeg."https://link.springer.com/chapter/10.1007/978-3-662-58768-3_
    corecore